19UCI816- ARTIFICIAL INTELLIGENCE AND ROBOTICS
UNIT 2
PLANNING
Artificial intelligence is an important technology in the future. Whether it is intelligent robots, self-driving cars, or smart cities, they will all use different aspects of artificial intelligence!!! But Planning is very important to make any such AI project.
Even Planning is an important part of Artificial Intelligence which deals with the tasks and domains of a particular problem. Planning is considered the logical side of acting.
Everything we humans do is with a definite goal in mind, and all our actions are oriented towards achieving our goal. Similarly, Planning is also done for Artificial Intelligence.
Forward State Space Planning (FSSP) and
Backward State Space Planning (BSSP) at the basic level.
[image: C:\Users\Pavithra\Downloads\Search-1-1.jpg]

[image: What is the Role of Planning in Artificial Intelligence]
1. Forward State Space Planning (FSSP)
FSSP behaves in the same way as forwarding state-space search. It says that given an initial state S in any domain, we perform some necessary actions and obtain a new state S' (which also contains some new terms), called a progression. It continues until we reach the target position. Action should be taken in this matter.
· Disadvantage: Large branching factor
· Advantage: The algorithm is Sound
2. Backward State Space Planning (BSSP)
BSSP behaves similarly to backward state-space search. In this, we move from the target state g to the sub-goal g, tracing the previous action to achieve that goal. This process is called regression (going back to the previous goal or sub-goal). These sub-goals should also be checked for consistency. The action should be relevant in this case.
· Disadvantages: not sound algorithm (sometimes inconsistency can be found)
· Advantage: Small branching factor (much smaller than FSSP)
So for an efficient planning system, we need to combine the features of FSSP and BSSP, which gives rise to target stack planning which will be discussed in the next article.
 [image: What is the Role of Planning in Artificial Intelligence - Javatpoint]
Partial-order planning
Partial-order planning is an approach to automated planning that maintains a partial ordering between actions and only commits ordering between actions when forced to that is, ordering of actions is partial. Also this planning doesn't specify which action will come out first when two actions are processed. By contrast, total-order planning maintains a total ordering between all actions at every stage of planning. Given a problem in which some sequence of actions is required in order to achieve a goal, a partial-order plan specifies all actions that need to be taken, but specifies an ordering between actions only where necessary.
A partial-order plan or partial plan is a plan which specifies all actions that need to be taken, but only specifies the order between actions when necessary. It is the result of a partial-order planner. A partial-order plan consists of four components:
· A set of actions (also known as operators).
· A partial order for the actions. It specifies the conditions about the order of some actions.
· A set of causal links. It specifies which actions meet which preconditions of other actions. Alternatively, a set of bindings between the variables in actions.
· A set of open preconditions. It specifies which preconditions are not fulfilled by any action in the partial-order plan.
In order to keep the possible orders of the actions as open as possible, the set of order conditions and causal links must be as small as possible.
A plan is a solution if the set of open preconditions is empty.
A linearization of a partial order plan is a total order plan derived from the particular partial order plan; in other words, both order plans consist of the same actions, with the order in the linearization being a linear extension of the partial order in the original partial order plan.
Example
For example, a plan for baking a cake might start:
· go to the store
· get eggs; get flour; get milk
· pay for all goods
· go to the kitchen
This is a partial plan because the order for finding eggs, flour and milk is not specified, the agent can wander around the store reactively accumulating all the items on its shopping list until the list is complete.
Partial-order planner
A partial-order planner is an algorithm or program which will construct a partial-order plan and search for a solution. The input is the problem description, consisting of descriptions of the initial state, the goal and possible actions.
Threats
As seen in the algorithm presented above, partial-order planning can encounter certain threats, meaning orderings that threaten to break connected actions, thus potentially destroying the entire plan. There are two ways to resolve threats:
· Promotion
· Demotion
Promotion orders the possible threat after the connection it threatens. Demotion orders the possible threat before the connection it threatens.
Partial-order planning algorithms are known for being both sound and complete, with sound being defined as the total ordering of the algorithm, and complete being defined as the capability to find a solution, given that a solution does in fact exist.

[image: Partial order planning (POP) in Artificial Intelligence in Unit - III, Planning - YouTube]
Hierarchical task network
In artificial intelligence, hierarchical task network (HTN) planning is an approach to automated planning in which the dependency among actions can be given in the form of hierarchically structured networks.
Planning problems are specified in the hierarchical task network approach by providing a set of tasks, which can be:
1. primitive (initial state) tasks, which roughly correspond to the actions of STRIPS;
2. compound tasks (intermediate state), which can be seen as composed of a set of simpler tasks;
3. Goal tasks (goal state), which roughly corresponds to the goals of STRIPS, but are more general.
A solution to an HTN problem is then an executable sequence of primitive tasks that can be obtained from the initial task network by decomposing compound tasks into their set of simpler tasks, and by inserting ordering constraints.
A primitive task is an action that can be executed directly given the state in which it is executed supports its precondition. A compound task is a complex task composed of a partially ordered set of further tasks, which can either be primitive or abstract. A goal task is a task of satisfying a condition. The difference between primitive and other tasks is that the primitive actions can be directly executed.
[image: Hierarchical Task Network (HTN) | Abdelrahman Elogeel's Blog]
[image: https://s3.amazonaws.com/html5.powershow.com/P1254845945CWUVS/data/img2.png]

HTN PLANNING
· Capture hierarchical structure of planning algorithm
· Planning domain contains no primitive actions and schemas for reducing them
· Reduction schemas:
· Given by the schemas
· Express preferred ways to accomplish to a task
Planning Graphs
 Planning graphs are an efficient way to create a representation of a planning problem that can be used to
 Achieve better heuristic estimates
 Directly construct plans
 Planning graphs only work for propositional problems.
Planning graphs consists of a sequential of levels that correspond to time steps in the plan.
 Level 0 is the initial state.
 Each level consists of a set of literals and a set of actions that represent what might be possible at that step in the plan
 Might be is the key to efficiency
 Records only a restricted subset of possible negative interactions among actions.
Each level consists of
 Literals = all those that could be true at that time step, depending upon the actions executed at preceding time steps.
 Actions = all those actions that could have their preconditions satisfied at that time step, depending on which of the literals actually hold.
PG Example
Init(Have(Cake))
Goal(Have(Cake) Eaten(Cake))
Action(Eat(Cake),
PRECOND: Have(Cake)
EFFECT: ¬Have(Cake) Eaten(Cake))
Action(Bake(Cake),
PRECOND: ¬ Have(Cake)
EFFECT: Have(Cake))
Planning with Propositional logic
Propositional logic, also known as sentential logic and statement logic, is the branch of logic that studies ways of joining and/or modifying entire propositions, statements or sentences to form more complicated propositions, statements or sentences, as well as the logical relationships and properties that are derived from these methods of combining or altering statements. In propositional logic, the simplest statements are considered as indivisible units, and hence, propositional logic does not study those logical properties and relations that depend upon parts of statements that are not they statements on their own, such as the subject and predicate of a statement. The most thoroughly researched branch of propositional logic is classical truth-functional propositional logic, which studies logical operators and connectives that are used to produce complex statements whose truth-value depends entirely on the truth-values of the simpler statements making them up, and in which it is assumed that every statement is either true or false and not both. However, there are other forms of propositional logic in which other truth-values are considered, or in which there is consideration of connectives that are used to produce statements whose truth-values depend not simply on the truth-values of the parts, but additional things such as their necessity, possibility or relatedness to one another.

PLANNING GRAPH
[image:]
[image:]
[image:]
[image:]
[image:]
[image:][image:][image:][image:]

PLANNING GRAPH
[image:]
[image:]
[image:]
[image:]
[image:]
[image:][image:][image:][image:]

image3.png
Start State Goal State

Wword planning problem

image4.jpeg
The partial-order plan - The shoes and socks

problem

* A partial-order plan for putting on shoes and socks, and the six
corresponding linearizations into total-order plans

Partial- Order Plan Total-Order Plans:
start st | |sont | [san | [swne | [sr | | s
/ \ Rignt | [Riant | [Len Left Rignt | [Lett
sock | | sock | [sock| | sock [[sock | [sock
Len Right
Sock Sock i i i 1 i i
Len ten | [ront | [riont | [Riont | [cen
sock | [sock | [sock | [sock | [snoe | | shoe
LenSockon RightSockon i 1 i i
g i rignt | [Len Rignt | [Len Len Right
o o Sh;)e sn:e sn;»e sniue So;k SU;K
Left riont | [Len Right | [Len Rignt
shoe | |shoe | |snoe | |Shoe | |snoe| [shoe
LeftShoeOn, RightShoeon) 1) 7
Finish Finish| [Finish| | Finish| [Finisn| [Finisn| | Finish

image5.png
Obtain

Builder

image6.png
Buyland e

Get Loan ————————|

Buy Land

Get Loan

Own Land

Have Money

Build
House

Have(House)

decomposes to

Construction

Have Money /

-

Move

Move

image7.emf
AIPlanning

SATPlanning

Relations inCPC

Ops in CPC

Plans in CPC

Example

Parallelplans

Planning in the propositional logic

Early work on deductive planning viewed plans as

proofs that lead to a desired goal(theorem).

Planning as satisfiability testing was proposed in 1992.

1

A propositional formula represents all length n action

sequences from the initial state to a goalstate.

If the formula is satisfiable then a plan of length nexists.

2

Satisfiability planning is the best approach tosolve

difficult planningproblems.

Heuristic search is often more efficient on very big but

easyproblems.

Bounded model-checking in Computer Aided

Verification was introduced in 1998 as an extension of

satisfiability planning after the success of the latterhad

been noticed outside the AI community.

Microsoft_Office_PowerPoint_Slide1.sldx
AI Planning

SAT Planning

Relations in CPC Ops in CPC Plans in CPC Example

Parallel plans

Planning in the propositional logic

Early work on deductive planning viewed plans as proofs that lead to a desired goal (theorem).

Planning as satisfiability testing was proposed in 1992.

1

A propositional formula represents all length n action sequences from the initial state to a goal state.

If the formula is satisfiable then a plan of length n exists.

2

Satisfiability planning is the best approach to solve difficult planning problems.

Heuristic search is often more efficient on very big but easy problems.

Bounded model-checking in Computer Aided Verification was introduced in 1998 as an extension of satisfiability planning after the success of the latter had been noticed outside the AI community.

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image1.png

Planring i the proposiionsllogic

e e b

image8.emf
AIPlanning

SATPlanning

Relations inCPC

Ops in CPC

Plans in CPC

Example

Parallelplans

Planning in the propositional logic

Abstractly

1

Represent actions (= binary relations) aspropositional

formulae.

Construct a formula saying “execute one of theactions”.

Construct a formula saying “execute a sequence of n

actions, starting from the initial state, ending in a goal

state.”

Test the satisfiability of this formula by a satisfiability

algorithm.

If the formula is satisfiable, construct a plan from a

satisfyingvaluation.

2

3

4

5

Microsoft_Office_PowerPoint_Slide2.sldx
AI Planning

SAT Planning

Relations in CPC Ops in CPC Plans in CPC Example

Parallel plans

Planning in the propositional logic

Abstractly

1

Represent actions (= binary relations) as propositional formulae.

Construct a formula saying “execute one of the actions”. Construct a formula saying “execute a sequence of n

actions, starting from the initial state, ending in a goal state.”

Test the satisfiability of this formula by a satisfiability algorithm.

If the formula is satisfiable, construct a plan from a satisfying valuation.

2

3

4

5

image2.png

image3.png

image4.png

image5.png

image6.png

image1.png

Planning in the prof

tions!logic

© Fowrms

image9.emf
AIPlanning

SATPlanning

Relations inCPC

Ops in CPC

Plans in CPC

Example

Parallelplans

Sets (of states) as formulae

Formulae on A as sets ofstates

We view formulae φ as representing sets ofstates

s :A →{0,1}.

Example

Formula a

∨

b on the state variables a, b, c represents theset

{010,011,100,101,110,111}.

Microsoft_Office_PowerPoint_Slide3.sldx
AI Planning

SAT Planning

Relations in CPC Ops in CPC Plans in CPC Example

Parallel plans

Sets (of states) as formulae

Formulae on A as sets of states

We view formulae φ as representing sets of states

s : A → {0, 1}.

Example

Formula a ∨ b on the state variables a, b, c represents the set

{010, 011, 100, 101, 110, 111}.

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image1.png

image10.emf
AIPlanning

SATPlanning

Relations inCPC

Ops in CPC

Plans in CPC

Example

Matrices as formulae

Example (Formulae as relations as matrices)

Binary relation{(00,00),(00,01),

(00,11),(01,01),(01,11),(10,

11),

(11, 11)} can be representedas

a

j

b

j

a

j

b

j

a

j

b

j

a

j

b

j

ab 00 01 10 11

00 1 1 0 1

Parallelplans

01 0 1 0 1

10 0 0 0 1

11 0 0 0 1

Representation of big matrices is possible

For n state variables a formula (over 2nvariables)

represents an adjacency matrix of size 2

n

î2

n

.

For n = 20, matrix size is 2

20

î2

20

∼

10

6

î10

6

.

Microsoft_Office_PowerPoint_Slide4.sldx
AI Planning

SAT Planning

Relations in CPC Ops in CPC Plans in CPC Example

Matrices as formulae

Example (Formulae as relations as matrices)

Binary relation {(00, 00), (00, 01),

(00, 11), (01, 01), (01, 11), (10, 11),

(11, 11)} can be represented as

ajbj ajbj ajbj ajbj ab 00 01 10 11

		00		1		1		0		1				Parallel plans

		01		0		1		0		1				

		10		0		0		0		1				

		11		0		0		0		1				

Representation of big matrices is possible

For n state variables a formula (over 2n variables) represents an adjacency matrix of size 2n × 2n.

For n = 20, matrix size is 220 × 220 ∼ 106 × 106.

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image1.png

image11.jpeg
Planning graphs

+ GraphPlan is an algorithm based on planning graph
* Planning graphs are also used as a source of heuristics (an estimate of
how many steps it takes to reach the goal)

« Planning graph is an approximation of a complete tree of all possible
actions and their results

Planning graphs work only for propositional planning problems—ones with no variables.

image12.jpeg
Continue...

* Planning graph is organized into levels

* Level S initial state, consisting of nodes representing each fluent
that holdsin S,

* Level AO: each ground action that might be applicable in S,
Then alternate S; and A

* S, contains fluent which could hold at time i, (may be both P and =P);
literals may show up too early but never too late

* A, contains actions which could have their preconditions satisfied at i

image13.jpeg
Mutex

* A mutex between two actions indicates that it is
impossible to perform these actions in parallel.

* A mutex between two literals indicates that it is
impossible to have these both literals true at this
stage.

image14.jpeg
Continue...

* Actions
* Inconsistent effects: two actions that lead to inconsistent effects
* Interference: an effect of the first action negates the precondition of the other
action
* Competing needs: a precondition of the first action is mutually exclusive with
a precondition of the second action.
* Literals
* one literal is the negation of the other one
* Inconsistency support: each pair of action archiving the two literals are
mutually exclusive.

image15.jpeg
How to compute mutexes

* Inconsistent effects: one action negates an effect of the other.
* For example, Eat (Cake) and the persistence of Have(Cake) have inconsistent
effects because they disagree on the effect Have(Cake).
« Interference: one of the effects of one action is the negation of a
precondition of the other.
* For example Eat (Cake) interferes with the persistence of Have(Cake) by
negating its precondition.
+ Competing needs: one of the preconditions of one action is mutually
exclusive with a precondition of the other.

* For example, Bake(Cake) and Eat (Cake) are mutex because they compete on
the value of the Have(Cake) precondition.

image16.jpeg

image17.jpeg
Interference

image18.jpeg

image19.jpeg
* Init(Have(Cake))

* Goal(Have(Cake)AEaten(Cake))
* Action(Eat(Cake), PRECON: Have(Cake),
EFFECT: ~Have(Cake)AEaten(Cake))

* Action(Bake(Cake), PRECOND: ~Have(Cake),

EFFECT: Have(Cake))

The planning graph for the “have cake and eat cake too”

Example ‘

image1.jpeg

image2.png
Two types of planning in A1

/\

state Backward state
(FSSP) space planning (BSSP)

